1. Foreword Thanks for using ZVF330 Series inverter .The inverter use high quality components, material and adopt the latest DSP control technoloogy . The user manual provide installation, parameter setting, thourbleshooting ,and other relevant considerations for the users. In order to ensure proper installation and operation of the inverter. Please read the user manual before installation and keep it and distribute to the end users. For more details, please visit our webite to download the user manual. The following items for special need to notice: - Be sure to turn off the power when wiring. - Electronic components inside the inverter are particularly sensitive to static electricity. So don't insert foreign objects into the inverter and don't touch the main circuit board. - Even after cutting off the AC power, if the indicators on the keypads doesn't light off, it means there is high voltage inside the inverter and it is still very danagerous. Do not touch the inner circuit or components. - Make sure good connection for the ground terminal of the inverter. - Never connect the output terminal U, V, W to AC power. #### 2. Product Introduction #### 2.1 Inspection upon Arrival This product is guaranteed a high level of quality with strict outgoing inspection, crush proof and shockproof packaging. But this does not preclude damage to the product due to heavy collision or strong extrusion. So it is necessary to unpack the inverter upon arrival and perform these steps: - ① Check whether there is a deformed or damaged casing, or any shattered component. - ② Check the specification label of the inverter and make sure it matches the product part number you've ordered. - 3 Check whether the items in the packing list are in readiness or not. If there is any problem with the above-mentioned contents, please contact the supplier or Our Company immediately. #### 2.2 Demonstration of the Model Fig.2-1 Inverter Model Demonstration ## 2.3 Specification Label Fig.2-2 Inverter Label ## 2.4 Type Style Fig.2-3 Molded Wall-Mounted ## 2.5 Models and Specifications Table 2-1 Models and Specifications | Inverter Model
(M: Mini Type) | Input Voltage (V) | Rated Output
Current (A) | Adaptive
Motor Power
(kW) | |----------------------------------|-------------------|-----------------------------|---------------------------------| | ZVF330-M0R4T2/S2 | 220 | 2.4 | 0.4 | | ZVF330-M0R7T2/S2 | 220 | 4.5 | 0.75 | | ZVF330-M1R5T2/S2 | 220 | 7.0 | 1.5 | | ZVF330-M2R2T2/S2 | 220 | 10.0 | 2.2 | | ZVF330-M0R7T4 | 380 | 2.5 | 0.75 | | ZVF330-M1R5T4 | 380 | 3.7 | 1.5 | | ZVF330-M2R2T4 | 380 | 5.0 | 2.2 | #### 3.Inverter Wiring #### 3.1 Basic Wiring Diagram for Inverter Fig.3-1 Basic Wiring Diagram The jumper wire JP2 is used to switch between analog input ACI voltage and current . The jumper wire JP1 is used to switch between the analog output AFM voltage and current. #### 3.2 Main Circuit Terminal Fig.3-2 Diagram 1 for Main Circuit Terminal Applicable to the model: ZVF330-M0R4S2~M2R2S2 Fig.3-3 Diagram 2 for Main Circuit Terminal Applicable to the model: ZVF330-M0R4T2~M2R2T2 ZVF330-M0R7T4~M2R2T4 #### 3.3 Description on Control Circuit Terminals #### 1. Control circuit terminals are shown in the figure 3-4 Fig.3-4 Control Circuit Terminal ## **2. Description on Control Circuit Terminals** Table 3-1 Function Description on Control Circuit Terminal | Type | Terminal
Symbol | Function Description | Electrical Specification | |-----------------------------------|--------------------|--|--------------------------| | Public
port | СОМ | Digital signal public terminal | | | | X1 | Valid only when there is | INPUT, 0~24V power | | Mult | X2 | a short | level, low level valid, | | i-fuı
Ter | X3 | circuit between Xn
(n=1, 2, 3, 4, 5, 6, 7, 8) | 5Ma | | Multi-function Input
Terminal | X4 | and COM. The | | | n In
al | X5 | functions can be set by | | | put | X8 | the parameter F5.00~F5.07separately | | | | | Multi-function open | OUTPUT, Maximum | | M _t | | collector output is | load Current | | ılti-
put | | defined as on-off output | I≤50mA | | Multi-Function
output terminal | Y1 | terminal, whose function | | | | | is set by the parameter | | | on
nal | | F6.00~F6.01 with | | | | | reference of COM | | | Туре | Terminal Symbol | Function Description | Electrical Specification | |------------------------------|-----------------|--|---| | Analog Input terminal | +10V | External analog preset power supply, connecting GND, AVI terminal with potentiometer. The frequency can be set as required. | INPUT, 10VDC voltage | | t terminal | AVI | Analog voltage signal input, with reference of GND | INPUT, 0~10V
DC Voltage | | | ACI | Analog current signal input, with reference of GND | INPUT, 0~20mA
DC Current | | Public
port | GND | Analog signal public port | | | Analog
Output
Terminal | AFM | Programmable analog voltage output. Connect with the voltmeter . The corresponding output 0 to the maximum frequency , with reference of GND . | OUTPUT, 0~ 10VDC Voltage Or 0~20mA DC Current | | Type | Terminal Symbols | Function Description | Electrical Specifications | |---------------------------------|------------------|--|--------------------------------| | Power
Supply
Interface | +24V | 24VDC Power supply
output (control Power
supply) | 24VDC-100mA | | Pr | TA | Relay contact output. when normal, TA-TB | | | ogran
te | ТВ | turns on and TA-TC | Contact rated value: | | Programmable output
terminal | TC | turns off. when there is action ,TA-TB turns off and TA-TC turns on, This function is set by F6.02 | NO: 240VAC-3A
NC: 240VAC-1A | | Com | SG+ | Communication Signal Positive Port | | | Communic
ation Port | SG- | Communication Signal Negative Port | | #### 4. Keypad and Its Operation ## 4.1. Keypad Diagram Fig.4-1 E-330MA Operation Panel ## **4.2 Use of Operation Panel** Modification of parameter value for function (Modify the parameter value for F8.02 JOG function from 5.00hz to 20.00Hz) #### **5. Function Parameters** - The marked "√" Indicate the setting value of parameter can be modified no matter when the inverter stop or running. - The marked "X" indicates the setting value of parameter can be modified only when the inverter stop, and can not be modified when the inverter is running. - The marked " _" indicates the parameter can be displayed only and can not be modified . ## **5.1 F0 Group Basic Function** | Code | Name | Setting Range | Min.
Unit | Factory setting | Running Modification | |-------|-------------------------------|---|--------------|-----------------|-----------------------| | F0.00 | Speed control mode | 0: NO PG vector control 1: V/F control 2: Torque control | 1 | 1 | × | | F0.01 | Running
command
channel | Keyboard command channel Terminal command channel Communication command channel | 1 | 0 | × | | F0.02 | Keyboard
and terminal
UP/Down
setting | O: Valid, save the parameters when the inverter is power off 1: Valid ,the value can not be saved when the inverter is powered off 2: UP/DOWN setting is valid 3: Valid during running, clear when stop. | 1 | 0 | √ | |-------|--|--|------------|---------|----------| | F0.03 | Frequency
command
selection | 0: Keyboard or encoder setting 1: AVI 2: ACI 3: AVI+ ACI 4: keyboard potentiometer setting 5: PID control setting 6: Remote communication setting 7: External pulse setting 8: AVI(host) ± ACI(assist) combination setting | 1 | 0 | √ | | F0.04 | Maximum output frequency | 10.00∼600.00Hz | 0.01
Hz | 50.00Hz | × | | F0.05 | Upper
frequency
limit | F0.06~F0.04
(Max.Freuency) | 0.01
Hz | 50.00Hz | √ | | F0.06 | Lower
frequency
limit | 0.00~F0.05
(upper frequency limit) | 0.01
Hz | 0.00Hz | √ | | F0.07 | Keypad
setting
frequency | 0.00~F0.04 (Max.frequency) | 0.01
Hz | 50.00Hz | √ | | F0.08 | Acceleration time 1 | 0.1~3600.0s | 0.1s | Depend
on
model | √ | |----------------|-----------------------------------|---|------------|-----------------------|----------| | F0.09 | Deceleration time 1 | 0.1~3600.0s | 0.1s | Depend
on
model | √ | | F0.10 | Running direction selection | 0: Forward (the default running direction) 1: Reverse 2: Forbid reverse running | 1 | 0 | × | | F0.11 | Carrier frequency | 1.0~15.0kHz | 0.1
kHz | Depend
on
model | √ | | F0.12 | Motor
parameters
autotuning | 0: No action 1: Rotation autotuning 2: Static autotuning | 1 | 0 | × | | F0.13 | Restore parameters | 0: No action 1: Restore the default value 2: Clear fault records | 1 | 0 | × | | F0.14 | AVR
Fountion | 0: Disable 1: Enable all the time 2: Disabled during deceleration | 1 | 0 | √ | | F0.15
F0.16 | Reserved | | | | - | ## 5.2 F1 Group Start and Stop Control | Code | Name | Setting Range | Min.
Unit | Factory setting | Running Modification | |-------|---|--|--------------|-----------------|-----------------------| | F1.00 | Start Mode | 0: Start directly 1: DC braking and start 2: Speed tracking starting | 1 | 0 | × | | F1.01 | Direct
starting
frequency |
0.00~50.00Hz | 0.01
Hz | 1.50Hz | ~ | | F1.02 | Starting frequency maintain time | 0.0~50.0s | 0.1s | 0.0s | √ | | F1.03 | DC braking
current before
start | 0.0~150.0% | 0.1% | 0.0% | √ | | F1.04 | DC braking
time before
start | 0.0~50.0s | 0.1s | 0.0s | √ | | F1.05 | Stop mode | 0: Decelerate stop 1: Coast/Free stop | 1 | 0 | √ | | F1.06 | Starting
frequency of
DC braking
at stopping | 0.00~F0.04
(Max.frequency) | 0.01
Hz | 0.00Hz | √ | ## 5.2 F1 Group Start and Stop Control (continued) | Code | Name | Setting Range | Min.
Unit | Factory setting | Running Modification | |-------|--|---|--------------|-----------------|-----------------------| | F1.07 | Braking wait
time at
stopping | 0.0~50.0s | 0.1s | 0.0s | √ | | F1.08 | DC braking
current at
stopping | 0.0~150.0% | 0.1% | 0.0% | √ | | F1.09 | DC braking
time at
stopping | 0.0~50.0s | 0.1s | 0.0s | √ | | F1.10 | Dead time of FWD/REV | 0.0~3600.0s | 0.1s | 0.0s | √ | | F1.11 | Terminal
running
protection
selection
when power
on | Command invalid when powered on Command valid when powered on | 1 | 0 | √ | | F1.12 | Input/Output
terminal
selection | 0x000~0x7FF | 1 | 0x000 | √ | ## **5.3** F2 Group Motor Parameters | Code | Name | Setting Range | Min.
Unit | Factory setting | Running
Modification | |-------|-------------------------|---------------------------|--------------|-----------------------|-------------------------| | F2.00 | Inverter Type | 0: G Type
1: P Type | 1 | Depend
on
model | × | | F2.01 | Motor rated power | 0.4~700.0kW | 0.1k
W | Depend
on
model | × | | F2.02 | Motor rated frequency | 0.01~600.00Hz | 0.01
Hz | 50.00Hz | × | | F2.03 | Motor rated speed | 0∼36000rpm | 1rpm | Depend
on
model | × | | F2.04 | Motor rated voltage | 0∼460V | 1V | Depend
on
model | × | | F2.05 | Motor rated current | 0.1~2000.0A | 0.1A | Depend
on
model | × | | F2.06 | Motor stator resistance | $0.001{\sim}65.535\Omega$ | 0.001
Ω | Depend
on
model | √ | | F2.07 | Motor rotor resistance | $0.001{\sim}65.535\Omega$ | 0.001
Ω | Depend
on
model | √ | | F2.08 | Motor
leackage
inductance | 0.1∼6553.5mH | 0.1m
H | Depend
on
model | √ | |-------|---------------------------------|--------------|-----------|-----------------------|---| | F2.09 | Motor mutual inductance | 0.1∼6553.5mH | 0.1m
H | Depend
on
model | √ | | F2.10 | Current without load | 0.01~655.35A | 0.01
A | Depend
on
model | √ | ## **5.4 F3 Group Vector Control** | Code | Name | Setting Range | Min.
Unit | Factory setting | Running Modification | |-------|---|---------------|--------------|-----------------|-----------------------| | F3.00 | Proportional
gain 1 of
speed loop | 0~10000 | 1 | 15 | √ | | F3.01 | Integration
time 1 of
speed loop | 0.01~100.00s | 0.01s | 2.00s | √ | | F3.02 | Low
switching
point
frequency | 0.00~F3.05 | 0.01
Hz | 5.00Hz | √ | | F3.03 | Proportional gain 2 of speed loop | 0~10000 | 1 | 10 | √ | | F3.04 | Integration
time 2 of
speed loop | 0.01~100.00s | 0.01s | 3.00s | √ | |-------|---|--|------------|---------|----------| | F3.05 | High
switching
point
frequency | F3.02~F0.04
(Max.frequency) | 0.01
Hz | 10.00Hz | √ | | F3.06 | Slip
compensation
rate of VC | 50~200% | 1% | 100% | √ | | F3.07 | Torque upper-limit setting | 0.0~200.0%
(Inverter rated current) | 0.1% | 150.0% | √ | | F3.08 | Speed filter coefficients | 0.000~1.000 | 0.001 | 0.125 | √ | | F3.09 | Without load
current
compensation
coefficients | 0.000~9.999 | 0.001 | 0.800 | √ | ## 5.5 F4 Group V/F Control | Code | Name | Setting Range | Min.
Unit | Factory setting | Running
Modification | |---------------------|------------------------------------|---|--------------|-----------------|-------------------------| | F4.00 | V/F Curve setting | 0: Linear Curve 1: Square V/F curve | 1 | 0 | × | | F4.01 | Torque Boost | 0.0%: (auto)
0.1~30.0% | 0.1% | 0.0% | √ | | F4.02 | Torque boost cutoff | 0.0~50.0% (Relative to the rated motor frequency) | 0.1% | 20.0% | × | | F4.03 | V/F Slip
compensation
limit | 0.0~100.0% | 0.1% | 0.0% | √ | | F4.04 | Auto energy
saving
selection | 0: Disable
1; Enabled | 1 | 0 | × | | F4.05
~
F4.12 | Reserved | | | | - | # 5.6 F5 Group Input terminal | Code | Name | Setting Range | Min.
Unit | Factory setting | Running
Modification | |-------|--------------------------------------|---|--------------|------------------------|-------------------------| | F5.00 | X1 terminal
function
selection | 0: No function 1: Forward running 2: Reverse running 3: 3-Wire running control 4: Jog forward control | 1 | 1 | × | | F5.01 | X2 terminal function selection | 5: Jog reverse control 6: Coast to stop 7: Reset fault; | 1 | 2 | × | | F5.02 | X3 terminal function selection | 8: External fault input 9: Frequency UP command (UP) | 1 | 7 | × | | F5.03 | X4 terminal function selection | 10: Frequency DOWN command (DOWN) 11: Clear frequency UP/DOWN | 1 | 0 | × | | F5.04 | X5 terminal function selection | 12; Multi-step speed
terminal 1
13: Multi-step speed
terminal 2 | 1 | 0 | × | | F5.05 | X6 terminal function selection | 14: Multi-step speed
terminal 3
15: Multi-step speed | 1 | 0 | × | | F5.06 | X7 terminal function selection | terminal 4 | 1 | 0 | × | | F5.07 | X8 terminal function selection | 16: Acceleration and deceleration time selection 17: PID control pause 18: Traverse frequency pause (stop at the current frequency) 19: Traverse frequency reset (return to the centre frequency). 20: Acceleration and deceleration prohibition 21: Disable torque control 22: Clear frequency acc.and dec. settings 23: DC braking when stopping 24: External pulse input 25: Frequency switch to ACI. 26: Frequency switch to ACI. 27: Reserved 28: Decelerate Stop | 1 | 0 | × | |-------|--------------------------------|--|---|---|---| | F5.08 | ON/OFF filter times | 1~100 | 1 | 5 | √ | | F5.09 | Terminal control running mode | 0: 2-wire control mode 1 1: 2-wire control mode 2 2: 3-wire control mode 1 3: 3-wire control mode 2 | 1 | 0 | × | ## **5.6 F5 Group Input terminal (continued)** | Code | Name | Setting Range | Min.
Unit | Factory setting | Kunning
Modification | |-------|--|----------------|--------------|-----------------|-------------------------| | F5.10 | UP/DOWN
terminal
change speed
rate | 0.01~50.00Hz/s | 0.01H
z/s | 0.50Hz/
s | √ | | F5.11 | AVI lower limit | 0.00~10.00V | 0.01V | 0.00V | √ | | F5.12 | AVI lower
limit
corresponding
setting | -100.0~100.0% | 0.1% | 0.0% | √ | | F5.13 | AVI upper limit | 0.00~10.00V | 0.01V | 10.00V | √ | | F5.14 | AVI upper
limit
corresponding
setting | -100.0~100.0% | 0.1% | 100.0% | √ | | F5.15 | AVIinput filter time | 0.00~10.00s | 0.01s | 0.10s | √ | | F5.16 | ACI lower limit | 0.00~10.00V | 0.01V | 0.00V | √ | | F5.17 | ACI lower
limit
corresponding
setting | -100.0~100.0% | 0.1% | 0.0% | √ | |-------|--|---------------|------------|-------------|----------| | F5.18 | ACI upper limit | 0.00~10.00V | 0.01V | 10.00V | √ | | F5.19 | ACI upper
limit
corresponding
setting | -100.0~100.0% | 0.1% | 100.0% | √ | | F5.20 | ACI input filter time | 0.00~10.00s | 0.01s | 0.10s | √ | | F5.21 | Maximum pulse input | 0.0~20.0kHz | 0.1kH
z | 20.0kH
z | √ | | F5.22 | Pulse input lower limit | 0.0~20.0kHz | 0.1kH
z | 0.0kHz | √ | | F5.23 | Pulse input
lower limit
corresponding
setting | -100.0~100.0% | 0.1% | 0.0% | √ | | F5.24 | Pulse input
upper limit | 0.0~20.0kHz | 0.1kH
z | 10.0kH
z | √ | | F5.25 | Pulse input
upper limit
corresponding
setting | -100.0~100.0% | 0.1% | 100.0% | √ | | F5.26 | Center
voltage
hysteresis
loop width | 0.00~10.00V | 0.01V | 0.15V | ~ | |---------------------|---|-------------|-------|-------|----------| | F5.27
~
F5.30 | Reserved | | | | | ## **5.7 F6** Group Output Terminal | Code | Name | Setting Range | Min.
Unit | Factory setting | Kunning
Modification | |-------|---------------------------|--|--------------|-----------------|-------------------------| | F6.00 | Y1 output selection | 0: No output1: Forward running | | 1 | √ | |
F6.01 | Y2 output selection | Reverse tunning Fault output Frequency level detection | | 2 | √ | | F6.02 | Relay output
selection | FDT arrival 5: frequency reached 6: Zero speed running 7: Upper limit frequency reached 8: Lower frequency limit reached 9: Running 10: Reserved | 1 | 3 | √ | | F6.03 | AFM output selection | 0: Running frequency 1: Setting frequenc 2: Runnign RPM 3: Output current 4: Output Voltage 5: Output power 6: Output torque 7: Analog AVI input 8: Analog ACI input 9~14: Reserved | 1 | 0 | √ | |-------|---|---|-------|--------|----------| | F6.04 | AFM output lower limit | 0.0~100.0% | 0.1% | 0.0% | √ | | F6.05 | The lower limit corresponding to the AFM output | 0.00~10.00V | 0.01V | 0.00V | √ | | F6.06 | AFM output upper limit | 0.0~100.0% | 0.1% | 100.0% | √ | | F6.07 | The upper limit corresponding to the AFM output | 0.00~10.00V | 0.01V | 10.00V | √ | | F6.08 | DFM output selection | $0 \sim 14 \text{ (same as F6.03)}$ | 0 | 0 | √ | | F6.09 | DFM output
lower limit | 0.0~100.0% | 0.1% | 0.0% | √ | | F6.10 | The lower limit corresponding to the DFM output | 0.0~10.0kHz | 0.1
kHz | 0.0kHz | ✓ | |-------|---|-------------|------------|-------------|----------| | F6.11 | DFM output upper limit | 0.0~100.0% | 0.1% | 100.0% | √ | | F6.12 | The lower limit corresponding to the DFM output | 0.0∼10.0kHz | 0.1
kHz | 10.0
kHz | √ | | F6.13 | Relay time
delay swith
on time | 0.1~3600.0s | 0.1s | 0.0s | √ | | F6.14 | Relay time delay off time | 0.1~3600.0s | 0.1s | 0.0s | √ | | F6.15 | Reserved | | | | - | ## 5.8 F7 Group-Human-Machine Interface | Code | Name | Setting Range | Min.
Unit | Factory setting | Kunning
Modification | |-------|--|---|--------------|-----------------|-------------------------| | F7.00 | user password | 0~65535 | 1 | 0 | √ | | F7.01 | Reserved | | | 0 | - | | F7.02 | Parameter copy | 0: No operation 1: All parameters will be uploaded to keyboard 2: All parameters will be download to the machine. (Exept F2 group) 3: Reserved 4: The keyboard function parameters are download to the machine. (All) | 1 | 0 | × | | F7.03 | REV/JOG
function
selection | 0: Jog operation 1: FWD/REV switching 2: Clear UP/DOWN setting 3: Reverse running | 1 | 0 | × | | F7.04 | STOP/RESE
T key stop
function
selection | 0: Valid when keypad control 1: Valid when keypad or terminal control 2: Valid when keypad or communication control 3: Always valid | 1 | 0 | √ | | F7.05 | Reserved | | | 0 | - | | F7.06 | Running state
display
parameter
selection | 0~0xFFFF BIT0: Running frequency BIT1: Setting frequency BIT2: DC bus voltage BIT3: Output voltage BIT4: Output current BIT5: running rotation speed BIT6: output power BIT7: output torque BIT8: PID setting BIT9: PID feedback BIT10: Input terminal state BIT11: Output terminal state BIT12: Anaglog AVI value BIT13: Anaglog ACI value BIT14: The current step of multi-step BIT15: Roeque setting value | 1 | 0x00FF | √ | |-------|--|---|---|--------|----------| | F7.07 | Stop state
display
parameter
selection | 1~0x3FF BIT0: setting frequency BIT1: DC bus voltage BIT2: Input terminal state BIT3: Output terminal state BIT4: PID setting value BIT5: PID feedback value BIT6: analog AVI value BIT7: Analog ACI value BIT8: The current step of multi-step BIT9: Torque setting value BIT10~BIT15: Reserved | 1 | 0x40F | √ | | F7.08 | Rectifier
module
temperature | 0~100.0℃ | 0.1℃ | | - | | | |---------------------|------------------------------------|---|------|---|---|--|--| | F7.09 | IGBT module temperature | 0~100.0℃ | 0.1℃ | | 1 | | | | F7.10 | Software version | 0.00~99.9 | 1.00 | | ı | | | | F7.11 | Accumulated running time | 0∼65535h | 1h | 0 | - | | | | F7.12
~
F7.13 | Reserved | | | | - | | | | F7.14 | The previous two fault type | 0~29 0: No fault (nonE) 1: Over current when acceleration (ocA) 2: Over current when decleration (ocd) 3: Over-current when constant speed running (ocn) 4: Over –voltage when when acceleration (ovA) 5: Over-voltage when decleration (ovd) 6: Over-voltage when constant running (ovn) 7: Over-voltage when stopping (ovS) 8: DC bus under voltage (Lv) 9: Input phase failure (LP) 10: Output short circuit (SC) 11: Inverter overheat (OH1) 12: Motor overload (OL1) | | | | | | | F7.15 | The previous fault type | 13: Inverter overload (OL2) 14: External fault (EF) 15: RS485 communication fault (CE-1) 16: Reserved 17: Current detection fault (ItE) | | | | | |-------|---|--|------------|---|---|--| | F7.16 | Thecurrent fault type | 18: Keypad communication fault (CE-4) 19: Autotuning falut (tE) 20: EEPROM fault (EEP) 21: PID feedback fault (PIDE) 22~24: Recerved 25: dCE 26~27: Reserved 28: Output phase failure (SPO) 29: Reserved | | | | | | F7.17 | The current fault running frequency | 0.00~600.00Hz | 0.01
Hz | | 1 | | | F7.18 | The current fault output current | 0.1~3000.0A | 0.1A | | - | | | F7.19 | The current fault DC bus voltage | 0∼1000V | 1V | | - | | | F7.20 | The current fault input terminal state | 0∼0xFFFF | 1 | 0 | - | | | F7.21 | The current fault output terminal state | 0∼0xFFFF | 1 | 0 | - | | ## 5.9 F8 Group-Enhanced Function | Code | Name | Setting Range | Min.
Unit | Factory setting | Kunning
Modification | |-------|--------------------------------|-------------------------------|--------------|-----------------------|-------------------------| | F8.00 | Acceleration time 2 | 0.1~3600.0s | 0.1s | Depend
on
model | √ | | F8.01 | Deceleration time 2 | 0.1~3600.0s | 0.1s | Depend
on
model | √ | | F8.02 | Jog running frequency | 0.00~F0.04 (Max.) | 0.01
Hz | 5.00Hz | √ | | F8.03 | Jog
acceleration
time | 0.1~3600.0s | 0.1s | Depend
on
model | √ | | F8.04 | Jog
deceleration
time | 0.1~3600.0s | 0.1s | Depend
on
model | √ | | F8.05 | Skip
frequency | 0.00~F0.04
(Max.frequency) | 0.01
Hz | 0.00Hz | √ | | F8.06 | Skip
frequency
bandwidth | 0.00~F0.04
(Max.frequency) | 0.01
Hz | 0.00Hz | √ | | F8.03 | Jog
acceleration
time | 0.1~3600.0s | 0.1s | Depend
on
model | √ | |-------|----------------------------------|--|------------|-----------------------|----------| | F8.04 | Jog
deceleration
time | 0.1~3600.0s | 0.1s | Depend
on
model | √ | | F8.05 | Skip
frequency | 0.00~F0.04
(Max.frequency) | 0.01
Hz | 0.00Hz | √ | | F8.06 | Skip
frequency
bandwidth | 0.00~F0.04
(Max.frequency) | 0.01
Hz | 0.00Hz | √ | | F8.07 | Traverse amplitude | 0.0~100.0% (Relative to the setting frequency) | 0.1% | 0.0% | √ | | F8.08 | Jitter
frequency
bandwidth | 0.0~50.0% (Relative to the traverse amplitude) | 0.1% | 0.0% | √ | | F8.09 | Rise time of traverse | 0.1~3600.0s | 0.1s | 5.0s | ~ | | F8.10 | Fall time of traverse | 0.1~3600.0s | 0.1s | 5.0s | √ | | F8.11 | Auto reset
times | 0~9999 | 0.1s | 0 | √ | | F8.12 | Fault reset interval | 0.1~100.0s | 0.1s | 1.0s | √ | | F8.13 | FDT Level | 0.00~ F0.04
(Max.frequency) | 0.01
Hz | 50.00
Hz | √ | |---------------------|--|--|------------|-------------|----------| | F8.14 | FDT lag | 0.0~100.0% (FDT) | 0.1% | 5.0% | √ | | F8.15 | Frequency
arrival
detecting
range | 0.0~100.0%
(Max.frequency) | 0.1% | 0.0% | √ | | F8.16 | Brake
threshold | 380V Series:
115.0~140.0%
(Stardard DC bus voltage) | 0.1% | 125.0% | √
√ | | | voltage | 220V Series:
115.0~140.0%
(Stardard DC bus voltage) | 0.1% | 115.0% | √ | | F8.17 | Coefficient of rotation speed | 0.1~999.9% Actual mechanical speed=120*output frequency *F8.17/Number of poles of motor. | 0.1% | 100.0% | ✓ | | F8.18 | Braking
energy output
starting value | 0~100% | 1% | 0% | √ | | F8.19
~
F8.20 | Reserved | | | | - | ## **5.10 F9 Group-PID control** | Code | Name | Setting Range | Min.
Unit | Factory setting | Kunning
Modification | |-------
--|--|--------------|-----------------|-------------------------| | F9.00 | PID given selection | 0: Keypad (F9.01) 1: Annalog chanel AVI given 2: Annalog chanel ACI given 3: Remote communication given 4: Multi-step given 5: keypad direct given | 1 | 0 | √ | | F9.01 | Keyboard
preset PID | 0.0~100.0% | 0.1% | 0.0% | √ | | F9.02 | PID feedback
source selection | 0: Analog channel AVI feedback 1: Analog channel ACI feedback 2: AVI+ACI feedback 3: Remote communication feedback | 1 | 0 | √ | | F9.03 | PID output
characteristics
selection | 0: PID output is positive1: PID output is negative | 1 | 0 | √ | | F9.04 | Proportional gain K (Kp) | 0.00~100.00 | 0.01 | 1.00 | √ | | F9.05 | Integral time
(Ti) | 0.01~100.00s | 0.1s | 0.10s | √ | |---------------------|--|--------------|------|--------|----------| | F9.06 | Differential time (Td) | 0.00~100.00s | 0.1s | 0.00s | √ | | F9.07 | Sample cycle (T) | 0.01~100.00s | 0.1s | 0.10s | √ | | F9.08 | PID control
bias limit | 0.0~100.0% | 0.1% | 0.0% | √ | | F9.09 | Feedback lost detecting value | 0.0~100.0% | 0.1% | 0.0% | √ | | F9.10 | Feedback lost detecting time | 0.0~3600.0s | 0.1s | 1.0s | √ | | F9.11 | Feedback gain | 0~200% | 0.1% | 100% | √ | | F9.12 | Awakening
threshold | 0.0~100.0% | 0.1% | 0.0% | √ | | F9.13 | Awakening
threshold
detection time | 0.00~360.00s | 0.1s | 1.00s | √ | | F9.14 | Sleep threshold | 0.0~100.0% | 0.1% | 100.0% | √ | | F9.15 | Sleep threshold detection time | 0.00~360.00s | 0.1% | 1.00s | √ | | F9.16
~
F9.20 | Reserved | | | | - | # **5.11 FA Group Multi- step speed control** | Code | Name | Setting Range | Min.
Unit | Factory setting | Kunning Modification | |-------|---------------------|---------------|--------------|-----------------|-----------------------| | FA.00 | Multi-step speed 1 | -100.0~100.0% | 0.1% | 0.0% | √ | | FA.01 | Multi-step speed 2 | -100.0~100.0% | 0.1% | 0.0% | √ | | FA.02 | Multi-step speed 3 | -100.0~100.0% | 0.1% | 0.0% | √ | | FA.03 | Multi-step speed 4 | -100.0~100.0% | 0.1% | 0.0% | √ | | FA.04 | Multi-step speed 5 | -100.0~100.0% | 0.1% | 0.0% | √ | | FA.05 | Multi-step speed 6 | -100.0~100.0% | 0.1% | 0.0% | ~ | | FA.06 | Multi-step speed 7 | -100.0~100.0% | 0.1% | 0.0% | √ | | FA.07 | Multi-step speed 8 | -100.0~100.0% | 0.1% | 0.0% | √ | | FA.08 | Multi-step speed 9 | -100.0~100.0% | 0.1% | 0.0% | √ | | FA.09 | Multi-step speed 10 | -100.0~100.0% | 0.1% | 0.0% | ~ | | FA.10 | Multi-step speed11 | -100.0~100.0% | 0.1% | 0.0% | √ | | FA.11 | Multi-step speed 12 | -100.0~100.0% | 0.1% | 0.0% | √ | | FA.12 | Multi-step speed 13 | -100.0~100.0% | 0.1% | 0.0% | √ | | FA.13 | Multi-step speed 14 | -100.0~100.0% | 0.1% | 0.0% | √ | | FA.14 | Multi-step speed 15 | -100.0~100.0% | 0.1% | 0.0% | √ | |---------------------|---|------------------------------------|------|------|----------| | FA.15 | Multi-step speed
direction source
selection | 0: External Control 1: own control | 1 | 0 | ~ | | FA.16
~
FA.20 | Reserved | | | | - | ## **5.12 Fb Protection Function** | Code | Name | Setting Range | Min.
Unit | Factory setting | Kunning
Modification | |-------|---|--|--------------|-----------------|-------------------------| | Fb.00 | Motor
overload
protection | 0: Disable. 1: normal motor (with low speed compensation) 2: variable frequency motor (without low speed compensation) | 1 | 2 | × | | Fb.01 | Motor
overload
protection
current | 20.0~120.0%
(Motor rated current) | 0.1% | 100.0% | √ | | Fb.02 | Momentary
power drop
frequency
point | 70.0~110.0% (Standard bus voltage) | 0.1% | 80.0% | √ | | Fb.03 | Momentary
power drop
frequency
rate of decline | 0.00~F0.04
(Max.frequency) | 0.01H
z | 0.00Hz | √ | |---------------------|---|--|--------------|-----------------------|----------| | Fb.04 | Over-voltage
stall
protection | 0: Disable
1: Enable | 1 | 0 | √ | | | Over-voltage | 110~150% (380V Series) | 1% | 130% | | | Fb.05 | stall
protection
voltage | 110~150% (220V Series) | 1% | 120% | √ | | Fb.06 | Auto current | 100~200% | 1% | GType: 160% | √ | | 10.00 | threshold | 100 200/0 | 1,0 | P Type: 130% | √ | | Fb.07 | Frequency
decrease rate
when current
limiting | 0.00~100.00Hz/s | 0.01
Hz/s | 10.00H
z/s | √ | | Fb.08 | Input phase
loss
protection
selection | 0: Invalid1: software detect is valid2: hardware detect is valid | 1 | Depend
on
model | √ | | Fb.09
~
Fb.10 | Reserved | | | | - | # **5.13** Fc Group Communication Parameters | Code | Name | Setting Range | Min.
Unit | Factory setting | Running Modification | |-------|--------------------|---|--------------|-----------------|-----------------------| | FC.00 | Local address | 1∼247,
0 broadcast address | 1 | 1 | √ | | FC.01 | Aud rate selection | 0: 1200bps 3: 9600bps
1: 2400bps 4: 19200bps
2: 4800bps 5: 38400bps | 1 | 4 | ~ | | FC.02 | Data
format | 0: No parity (N, 8, 1) for RTU 1: Even parity (E, 8, 1) for RTU 2: Odd parity (O, 8, 1) for RTU 3: No parity (N, 8, 2) for RTU 4: Even parity (E, 8, 2) for RTU 5: Odd parity (O, 8, 2) for RTU 6: No parity (N, 7, 1) for ASCII 7: Even parity (E, 7, 1) for ASCII 8: Odd parity (O, 7, 1) for ASCII 9: No parity (N, 7, 2) for ASCII 10: Even parity (E, 7, 2) for ASCII 11: Odd parity (O, 7, 2) for ASCII 12: No parity (N, 8, 1) for ASCII 13: Even parity (E, 8, 1) for ASCII 14: Odd parity (O, 8, 1) for ASCII 15: No parity (N, 8, 2) for ASCII 16: Even parity (E, 8, 2) for ASCII 17: Odd parity (O, 8, 2) for ASCII | 1 | 1 | ~ | | FC.03 | Commun
ication
answer
delay
time | 0∼200ms | 1ms | 5ms | √ | |-------|--|---|------|------|----------| | FC.04 | Commun
ication
timeout
delay | 0.0 (invalid) 0.1~200.0s | 0.1s | 0.0s | √ | | FC.05 | Commun
ication
error
action | O: Alarm and coast to stop Do not alarm and keep running Do not alarm and stop at the stopping method(only for communication control mode) Do not alarm and stop at the stopping method (for all communication control modes) | 1 | 1 | √ | | FC.06 | Respons
e action | 0: Response to reading and writing1: No response to writing | 1 | 0 | √ | | FC.07 | Commun
ication
paramete
rs
address
mode | O: Group mode 1: Sequential mode | 1 | 0 | √ | | FC.08 | Reserved | | | | - | # **5.14 Fd Group Supplementary Function** | Code | Name | Setting Range | Min.
Unit | Factory setting | Sminny | |-------|--|---|--------------|-----------------|----------| | Fd.00 | Low-frequency
threshold of
restraining
oscillation | 0~500 | 1 | 5 | √ | | Fd.01 | High-frequency
threshold of
restraining
oscillation | 0~500 | 1 | 5 | √ | | Fd.02 | Amplitude of restraining oscillation | 0~100 | 1 | 10 | √ | | Fd.03 | Threshold of restraining oscillation | 0.00~F0.04
(Max.frequency) | 0.01
Hz | 12.50Hz | √ | | Fd.04 | Restrain oscillation | 0: Enable 1: Diable | 1 | 1 | √ | | Fd.05 | PWM Selection | 0: PWM mode 1
1: PWM mode 2
2: PWM mode 3 | 1 | 0 | × | | Fd.06 | Torque setting source | 0: Keypad setting torque (corresponding to Fd.07) 1: Analog AVI setting torque (100% compared to 2 times of inverter rated current) 2: Analog ACI setting torque (same as 1) 3: Analog AVI + ACI setting torque (same) 4: multi-stage torque setting (same as 1) 5: Remote communication setting torque. (same as 1) | 1 | 0 | → | |-------|---|---|------|-------|----------| | Fd.07 | Keypad torque setting | -200.0~200.0% (the rated current of inverter) | 0.1% | 50.0% | √ | | Fd.08 | Upper
frequency limit
source
selection | 0: Keypad
setting upper limit frequency (F0.05) 1: Analog AVI setting upper limit frequency (100% corresponds to the maximum frequency) 2: Analog ACI setting upper limit frequency (same as 1) 3: Multi-step setting of upper limit frequency(same as 1) 4: Remote communication setting upper limit frequency (same as 1) | 1 | 0 | → | | Fd.09 | Auto current
limiting
selection | Enabled when constant speed Disabled when constant speed | 1 | 0 | √ | |---------------------|--|--|------|------|----------| | Fd.10 | Lower limit frequency operation mode | lower limit frequency running zero frequency running | 1 | 0 | × | | Fd.11 | Zero-frequency
operation
braking current | 0.0~150.0% | 0.1% | 0.0% | √ | | Fd.12 | Torque Static
Friction
Coefficient | 0.00~10.00 | 0.01 | 0.20 | √ | | Fd.13
~
Fd.15 | Reserved | | | | - | ## 6.Common Fault and Solutions Table 6-1 common fault and solutions | Fault code | Fault Type | Reason | Solution | | |------------|--|---|--|--| | oc A | Over-current
when
acceleration | ① Accel. time is too short. ② The load inertia is too big. ③ The torque increases too fast or V/F curve is improper. ④ The voltage of the power supply is too low. ⑤ The power of inverter is too low. ⑥ Restart the rotating motor after momentary stop. | ① Increase Acc time. ② Reduce the load inertia. ③ Reduce the Torque boost value or adjust V/Fcurve. ④ Check the input power supply. ⑤ Select a bigger capacity inverter. ⑥ Set the start mode F1.00 to rotating tracking start | | | ocd | Over-current
when
deceleration | Dec time is too short. The load inertia is too strong. The power of the inverter is too low. | ① Increase dec time. ② Decrease the inertia of the load. ③ Select a bigger capacity inverter. | | | ocn | Over-current
when
constant
speed
running | The input power is abnormal. The load is transient. The power of the inverter is too low. | Check the inpupower Reduce the load mutation. Select a bigger Capacity inverter. | | | ουЯ | Over-voltage
when
acceleration | The input voltage changes abnormally. Restart the rotating motor after momentary stop | ① Check the input power. ②Set the start mode F1.00 to rotating tracking start | |-----|--|---|--| | aud | Over-voltage
when
deceleration | Dec time is too short. There have loads of energy feedback The input power is abnormal. | Increase the dec time. Select the proper braking components Check the input power. | | חעם | Over-voltage
when
constant
speed
running | ①The input power is abnormal. ② There have loads of energy feedback ③ Voltage detection channel is abnormal | Check the input power. Install or select the proper braking components Ask for sevice. | | ou5 | Over-voltage when stop | ① The input power is abnormal. | ① Check the input power. | | Fault code | Fault Type | Reason | Solution | |------------|-------------------------------------|--|--| | Lи | Under
voltage
when
running | The input voltage is too low. Sudden power loss. Input power get fault. Poor contact of the DC circuit. Contactor with poor connection | ① Check the input voltage is low or not. ② Reset the inverter and check the input power. ③ Check the input power of the grid. ④ Check the main circuit or ask for service. ⑤ Check the contactor or ask for service. | | LP | Input phase loss | ① R,S and T phase loss | ① Check the input voltage ② Check installation and wiring | | 5P0 | Output phase loss | ① U,V and W phase
get loss or serious
unbalance for three
phase of the load | Check installation
and wiring Check the motor
and cable | | 5C | Power
module
failure | ① The three phase of inverter output is short circuit or gound fault. ② The inverter get instantaneous overcurrent | ① Check the wiring ② Improve the ventilation condition and reduce the carrier frequency. | | | | ③ The ambient temperature is too high. ④ Air duct jam or fan damage ⑤ The DC assistant power supply is damaged. ⑥ The control board is abnormal. | ③ Clear the duct and replace the fan④ Ask for service⑤ Ask for service | |------|--------------------|---|--| | aH I | Cooler
overheat | Ambient temperature is too high. fan damage Air duct jam | ① Low the ambient temperature ② Replace the fan. ③ Clear the duct and improve the ventilation conditions | | aL I | Motor
overload | ① The torque increases too fast or V/F curve is improper ② The voltage of the power supply is too low. ③ The motor didn't run or the load get mutation ④ The setting of motor overload coefficient is improper. | Reduce the torque boost value or adjust V/F curve. Check the grid voltage. Check the load and motor; Set the proper value of the motor overload coefficient protection Fb.01. | **ZVF330** Series Simple User Manual | Fault
Code | Fault
Type | Reason | Solution | | | |---------------|-----------------------------------|---|--|--|--| | oL2 | Inverter
overload | ① The torque increases too fast or V/F curve is abnormal ② Acc Time is too short. ③ The load is too big ④ The voltage of the grid is too low | Reduce the torque boost value or adjust V/F curve. Increase the Acc. Time Select a large power inverter Check the voltage of the grid | | | | EF | External fault | ① External device
get fault or the input
terminal is closed | ① Stop the external device and input terminal and clear the fault. | | | | I LE | Current
detection
Error | ① The current sensor or the circuit get fault ② The DC assistant power show the fault | ①Ask for service
②Ask for service | | | | ĿΕ | Motor
auto
–tuning
fault | ① The motor capacity doesn't comply with the inverter capacity ② The parameter of the motor does not set correctly ③ There have big deviation between the auto-tuning parameter of and the standard | ① Change the inverter mode ② Set the rating parameters according to the nameplate of the motor ③ Make the motor run without load and identify again | | | | | | parameter (4) Auto tuning get overtime | 4 Check the motor wiring and set the parameters | | | | |-------|--|--|---|--|--|--| | EEP | EEPROM reading and writing error | ① Error of reading and writing of the controlling parameters ② EEPROM get damaged. | Ask for service Ask for service | | | | | PI dE | PID
feedback
disconnec
tion fault | PID feedback
disconnection PID feedback
source disappear. | ① Check the PID feedback signal wires ② Check the PID feedback source | | | | | d[E | The main chip fault | ① The main chip get damaged | ① Seek for service | | | | | ΓE- 1 | RS485
communi
cation
fault | ① The baud rate setting is incorrect ② Serial port communication get failure due to interference ③ No PC communication signals | ① Set the proper baud rate ② Check the Communication wires. and increase the interference measures. ③ Check the PC is work or not and the communication cable is disconnected or not. | | | | |
Fault code | Fault Type | Reason | Solution | |------------|----------------------------------|--|---| | CE-4 | Keypad
communication
fault | ① The wire between the keypad and control board get failure ② The wire between the keypad and control board loose. | ① Ask for service ② Check and connect the wire again | | EAA I | Data upload
error | ① The wire between the keypad and control board get failure ② The wire between the keypad and control board loose. | ① Ask for service ② Check and connect the wire again | | ЕЯЯ2 | Data download
error | ① The wire between the keypad and control board get failure ② The wire between the keypad and control board loose. | ① Ask for service
② Check and
connect the wire
again | ## 7. Outline Dimension & Mounting Dimension ## 7.1 Inverter outline Dimension & Mounting Dimension **Fig.7-1 Inverter Outline Dimensional Drawrings** | | Power | Size(MM) | | | | | Weight | | | |------------------|-------|----------|-------|-----|------|-------|--------|---------|------| | Inverter Model | (kW) | Н | H1 | W | W1 | D | d | Fig. | (kg) | | ZVF330-M0R4T2/S2 | 0.4 | 1415 | 130.5 | 85 | 74 | 113 | Φ.5 | Fig.7-1 | | | ZVF330-M0R7T2/S2 | 0.75 | 141.5 | 130.5 | 83 | /4 | 113 | Ψ3 | F1g./-1 | | | ZVF330-M1R5T2/S2 | 1.5 | | | | | | | | | | ZVF330-M2R2T2/S2 | 2.2 | | | | | | | | | | ZVF330-M0R7T4 | 0.75 | 151 | 140 | 100 | 89.5 | 116.5 | Ф5 | Fig.7-1 | | | ZVF330-M1R5T4 | 1.5 | |] | | | | | | | | ZVF330-M2R2T4 | 2.2 | | | | | | | | | #### 7.2 Operator Panel Outline Dimension & Mounting Dimension Fig.7-2 Dimension of E-330 operation panel - When E-330 need to install outside of the inverter, it need to add another keypad installation mount. - Mounting hole size: width 45mm × height 75mm. #### 8. Quality Warranty #### 8.1 Inverter Quality warranty - 1. In case of a quality failure, the following regulations will be implemented: - If shipped within one month, the manufacturer shall take responsibility for refund, replacement and repair (except non-standard inverter). - If shipped within three months, the manufacturer shall take responsibility for replacement and repair. - If shipped within twelve months, the manufacturer shall take responsibility for repair. - If exact shipping date can't be fixed, the manufacturer shall provide eighteen-months warranty from the date of manufacture. User shall be required to pay for repair service after expiration of warranty period. - Paid life-long service is available regardless of where and when to use our inverter. - The manufacturer shall take responsibility only for the above service. If user need more guarantee, please apply for insurance company. - In following causes of failure, even within the warranty period, the user is required to pay for repair service: - 1) Failure caused by incorrect operation against user manual. - 2) Failure caused by using inverter beyond its standard specification requirement. - 3) Failure caused by natural disasters such as flood, fire, or abnormal voltage. - 4) Failure caused by unauthorized repair and modification. - 5) Failure or components ageing caused by improper environment. - 6) Payment is not settled as per purchasing agreement. - 7) Label, trademark and date of manufacture are not recognizable. - 8) Damage caused by improper transport and storage. - 9) The details of installation, operation, wiring and maintain can't be described clearly and truthfully. Refund, replacement and repair service will be provided only when goods is returned to manufacturer and responsibility ownership is confirmed. # **Appendix 4: Inverter User's Warranty Bill** ## User's detail: | Name of | The date of | | |--------------|-------------|--| | Distributor | purchase | | | Inverter | Serial | | | Model | Number | | | Equipment | Motor | | | Name | Power | | | Date of | Data of Usa | | | Installation | Date of Use | | | Records of repair | | | | | |-------------------|---------------------------------------|--|--|--| | Fault: | | | | | | | | | | | | Solution: | | | | | | | | | | | | Data of rangin | The name of manin worker(Signature) | | | | | Date of repair: | The name of reapir worker(Signature): | | | | | Fault:: | | | | |---------|--|--|--| | | | | | | Solution: | | |-----------------|---------------------------------------| | | | | | | | Date of repair: | The name of reapir worker(Signature): | The user should keep this warranty bill .